Orifice Pressure Drop Data

No allowance has been made for viscosity effects, or regain of pressure downstream.

These charts are based on the formula:
$Q=a A \sqrt{2 A P}$
where:
$\mathrm{Q}=$ Flow $\mathrm{m}^{3} / \mathrm{sec}$.
a = orifice coefficient
$\mathrm{A}=$ orifice dia. cm^{2}
$\Delta P=$ pressure drop N / m^{2}
$r=$ density $\mathrm{Ns}^{2} / \mathrm{m}^{4}$
Orifice diameter, millimeters

This equation becomes:
$\mathrm{Q}(\mathrm{I}, \mathrm{min})=0.4212 \times \mathrm{d}^{2}(\mathrm{~mm}) \sqrt{\text { pressure drop }}$ (bar) when $\mathrm{c}=0.6$
$r=0.9 \mathrm{~g} / \mathrm{cm}^{3}$

